Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 31, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389095

RESUMO

Pick's disease (PiD) is a subtype of the tauopathy form of frontotemporal lobar degeneration (FTLD-tau) characterized by intraneuronal 3R-tau inclusions. PiD can underly various dementia syndromes, including primary progressive aphasia (PPA), characterized by an isolated and progressive impairment of language and left-predominant atrophy, and behavioral variant frontotemporal dementia (bvFTD), characterized by progressive dysfunction in personality and bilateral frontotemporal atrophy. In this study, we investigated the neocortical and hippocampal distributions of Pick bodies in bvFTD and PPA to establish clinicopathologic concordance between PiD and the salience of the aphasic versus behavioral phenotype. Eighteen right-handed cases with PiD as the primary pathologic diagnosis were identified from the Northwestern University Alzheimer's Disease Research Center brain bank (bvFTD, N = 9; PPA, N = 9). Paraffin-embedded sections were stained immunohistochemically with AT8 to visualize Pick bodies, and unbiased stereological analysis was performed in up to six regions bilaterally [middle frontal gyrus (MFG), superior temporal gyrus (STG), inferior parietal lobule (IPL), anterior temporal lobe (ATL), dentate gyrus (DG) and CA1 of the hippocampus], and unilateral occipital cortex (OCC). In bvFTD, peak neocortical densities of Pick bodies were in the MFG, while the ATL was the most affected in PPA. Both the IPL and STG had greater leftward pathology in PPA, with the latter reaching significance (p < 0.01). In bvFTD, Pick body densities were significantly right-asymmetric in the STG (p < 0.05). Hippocampal burden was not clinicopathologically concordant, as both bvFTD and PPA cases demonstrated significant hippocampal pathology compared to neocortical densities (p < 0.0001). Inclusion-to-neuron analyses in a subset of PPA cases confirmed that neurons in the DG are disproportionately burdened with inclusions compared to neocortical areas. Overall, stereological quantitation suggests that the distribution of neocortical Pick body pathology is concordant with salient clinical features unique to PPA vs. bvFTD while raising intriguing questions about the selective vulnerability of the hippocampus to 3R-tauopathies.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doença de Pick , Tauopatias , Humanos , Doença de Pick/patologia , Demência Frontotemporal/patologia , Doença de Alzheimer/patologia , Encéfalo/patologia , Degeneração Lobar Frontotemporal/patologia , Atrofia/patologia , Tauopatias/patologia
2.
Ann Neurol ; 94(6): 1036-1047, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37592884

RESUMO

OBJECTIVE: Age-related dementia syndromes are often not related to a single pathophysiological process, leading to multiple neuropathologies found at autopsy. An amnestic dementia syndrome can be associated with Alzheimer's disease (AD) with comorbid transactive response DNA-binding protein 43 (TDP-43) pathology (AD/TDP). Here, we investigated neuronal integrity and pathological burden of TDP-43 and tau, along the well-charted trisynaptic hippocampal circuit (dentate gyrus [DG], CA3, and CA1) in participants with amnestic dementia due to AD/TDP, amnestic dementia due to AD alone, or non-amnestic dementia due to TDP-43 proteinopathy associated with frontotemporal lobar degeneration (FTLD-TDP). METHODS: A total of 48 extensively characterized cases (14 AD, 16 AD/TDP, 18 FTLD-TDP) were analyzed using digital HALO software (Indica Labs, Albuquerque, NM, USA) to quantify pathological burden and neuronal loss. RESULTS: In AD/TDP and FTLD-TDP, TDP-43 immunoreactivity was greatest in the DG. Tau immunoreactivity was significantly greater in DG and CA3 in AD/TDP compared with pure AD. All clinical groups showed the highest amounts of neurons in DG, followed by CA3, then CA1. The AD and AD/TDP groups showed lower neuronal counts compared with the FTLD-TDP group across all hippocampal subregions consistent with the salience of the amnestic phenotype. INTERPRETATION: We conclude that AD/TDP can be distinguished from AD and FTLD-TDP based on differential regional distributions of hippocampal tau and TDP-43. Findings suggest that tau aggregation in AD/TDP might be enhanced by TDP-43. ANN NEUROL 2023;94:1036-1047.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Doença de Alzheimer/patologia , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/patologia , Hipocampo/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas tau/metabolismo
3.
J Comp Neurol ; 531(18): 2109-2120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37376715

RESUMO

Anatomists have long expressed interest in neurons of the white matter, which is by definition supposed to be free of neurons. Hypotheses regarding their biochemical signature and physiological function are mainly derived from animal models. Here, we investigated 15 whole-brain human postmortem specimens, including cognitively normal cases and those with pathologic Alzheimer's disease (AD). Quantitative and qualitative methods were used to investigate differences in neuronal size and density, and the relationship between neuronal processes and vasculature. Double staining was used to evaluate colocalization of neurochemicals. Two topographically distinct populations of neurons emerged: one appearing to arise from developmental subplate neurons and the other embedded within deep, subcortical white matter. Both populations appeared to be neurochemically heterogeneous, showing positive reactivity to acetylcholinesterase (AChE) [but not choline acetyltransferase (ChAT)], neuronal nuclei (NeuN), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), microtubule-associated protein 2 (MAP-2), somatostatin (SOM), nonphosphorylated neurofilament protein (SMI-32), and calcium-binding proteins calbindin-D28K (CB), calretinin (CRT), and parvalbumin (PV). PV was more richly expressed in superficial as opposed to deep white matter neurons (WMNs); subplate neurons were also significantly larger than their deeper counterparts. NADPH-d, a surrogate for nitric oxide synthase, allowed for the striking morphological visualization of subcortical WMNs. NADPH-d-positive subcortical neurons tended to embrace the outer walls of microvessels, suggesting a functional role in vasodilation. The presence of AChE positivity in these neurons, but not ChAT, suggests that they are cholinoceptive but noncholinergic. WMNs were also significantly smaller in AD compared to control cases. These observations provide a landscape for future systematic investigations.


Assuntos
Doença de Alzheimer , Substância Branca , Animais , Humanos , Substância Branca/metabolismo , Acetilcolinesterase/metabolismo , NADP/metabolismo , Calbindinas/metabolismo , Neurônios/metabolismo , Calbindina 2/metabolismo , NADPH Desidrogenase/metabolismo , Doença de Alzheimer/patologia , Proteína G de Ligação ao Cálcio S100/metabolismo
4.
Front Aging Neurosci ; 15: 1164581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37358954

RESUMO

Frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau) commonly causes dementia syndromes that include primary progressive aphasia (PPA) and behavioral variant frontotemporal dementia (bvFTD). Cognitive decline in PPA and bvFTD is often accompanied by debilitating neuropsychiatric symptoms. In 44 participants with PPA or bvFTD due to autopsy-confirmed FTLD-tau, we characterized neuropsychiatric symptoms at early and late disease stages and determined whether the presence of certain symptoms predicted a specific underlying FTLD-tauopathy. Participants completed annual research visits at the Northwestern University Alzheimer's Disease Research Center. All participants had an initial Global Clinical Dementia Rating (CDR) Scale score ≤ 2, and neuropsychiatric symptoms were evaluated via the Neuropsychiatric Inventory-Questionnaire (NPI-Q). We assessed the frequency of neuropsychiatric symptoms across all participants at their initial and final visits and performed logistic regression to determine whether symptoms predicted a specific FTLD-tau pathologic diagnosis. Across the FTLD-tau cohort, irritability and apathy were most frequently endorsed at initial and final visits, respectively, whereas psychosis was highly uncommon at both timepoints. Irritability at initial visit predicted greater odds of a 4-repeat compared to a 3-repeat tauopathy (OR = 3.95, 95% CI = 1.10-15.83, p < 0.05). Initial sleep disturbance predicted greater odds of progressive supranuclear palsy (PSP) compared to other FTLD-tau subtypes (OR = 10.68, 95% CI = 2.05-72.40, p < 0.01). Appetite disturbance at final evaluation predicted lower odds of PSP (OR = 0.15, 95% CI = 0.02-0.74, p < 0.05). Our findings suggest that characterization of neuropsychiatric symptoms can aid in the prediction of underlying FTLD-tauopathies. Given considerable pathologic heterogeneity underlying dementias, neuropsychiatric symptoms may be useful for differential diagnosis and treatment planning.

5.
Acta Neuropathol Commun ; 11(1): 1, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597124

RESUMO

The dentate gyrus (DG), a key hippocampal subregion in memory processing, generally resists phosphorylated tau accumulation in the amnestic dementia of the Alzheimer's type due to Alzheimer's disease (DAT-AD), but less is known about the susceptibility of the DG to other tauopathies. Here, we report stereologic densities of total DG neurons and tau inclusions in thirty-two brains of human participants with autopsy-confirmed tauopathies with distinct isoform profiles-3R Pick's disease (PiD, N = 8), 4R corticobasal degeneration (CBD, N = 8), 4R progressive supranuclear palsy (PSP, N = 8), and 3/4R AD (N = 8). All participants were diagnosed during life with primary progressive aphasia (PPA), an aphasic clinical dementia syndrome characterized by progressive deterioration of language abilities with spared non-language cognitive abilities in early stages, except for five patients with DAT-AD as a comparison group. 51% of total participants were female. All specimens were stained immunohistochemically with AT8 to visualize tau pathology, and PPA cases were stained for Nissl substance to visualize neurons. Unbiased stereological analysis was performed in granule and hilar DG cells, and inclusion-to-neuron ratios were calculated. In the PPA group, PiD had highest mean total (granule + hilar) densities of DG tau pathology (p < 0.001), followed by CBD, AD, then PSP. PPA-AD cases showed more inclusions in hilar cells compared to granule cells, while the opposite was true in PiD and CBD. Inclusion-to-neuron ratios revealed, on average, 33% of all DG neurons in PiD cases contained a tau inclusion, compared to ~ 7% in CBD, 2% in AD, and 0.4% in PSP. There was no significant difference between DAT-AD and PPA-AD pathologic tau burden, suggesting that differences in DG burden are not specific to clinical phenotype. We conclude that the DG is differentially vulnerable to pathologic tau accumulation, raising intriguing questions about the structural integrity and functional significance of hippocampal circuits in neurodegenerative dementias.


Assuntos
Doença de Alzheimer , Degeneração Corticobasal , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Feminino , Masculino , Proteínas tau/metabolismo , Tauopatias/patologia , Doença de Alzheimer/patologia , Paralisia Supranuclear Progressiva/patologia , Giro Denteado/metabolismo
6.
J Neurosci ; 42(45): 8587-8594, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36180225

RESUMO

Average aging is associated with a gradual decline of memory capacity. SuperAgers are humans ≥80 years of age who show exceptional episodic memory at least as good as individuals 20-30 years their junior. This study investigated whether neuronal integrity in the entorhinal cortex (ERC), an area critical for memory and selectively vulnerable to neurofibrillary degeneration, differentiated SuperAgers from cognitively healthy younger individuals, cognitively average peers ("Normal Elderly"), and individuals with amnestic mild cognitive impairment. Postmortem sections of the ERC were stained with cresyl violet to visualize neurons and immunostained with mouse monoclonal antibody PHF-1 to visualize neurofibrillary tangles. The cross-sectional area (i.e., size) of layer II and layer III/V ERC neurons were quantified. Two-thirds of total participants were female. Unbiased stereology was used to quantitate tangles in a subgroup of SuperAgers and Normal Elderly. Linear mixed-effect models were used to determine differences across groups. Quantitative measurements found that the soma size of layer II ERC neurons in postmortem brain specimens were significantly larger in SuperAgers compared with all groups (p < 0.05)-including younger individuals 20-30 years their junior (p < 0.005). SuperAgers had significantly fewer stereologically quantified Alzheimer's disease-related neurofibrillary tangles in layer II ERC than Normal Elderly (p < 0.05). This difference in tangle burden in layer II between SuperAgers and Normal Elderly suggests that tangle-bearing neurons may be prone to shrinkage during aging. The finding that SuperAgers show ERC layer II neurons that are substantially larger even compared with individuals 20-30 years younger is remarkable, suggesting that layer II ERC integrity is a biological substrate of exceptional memory in old age.SIGNIFICANCE STATEMENT Average aging is associated with a gradual decline of memory. Previous research shows that an area critical for memory, the entorhinal cortex (ERC), is susceptible to the early formation of Alzheimer's disease neuropathology, even during average (or typical) trajectories of aging. The Northwestern University SuperAging Research Program studies unique individuals known as SuperAgers, individuals ≥80 years old who show exceptional memory that is at least as good as individuals 20-30 years their junior. In this study, we show that SuperAgers harbor larger, healthier neurons in the ERC compared with their cognitively average same-aged peers, those with amnestic mild cognitive impairment, and - remarkably - even compared with individuals 20-30 years younger. We conclude that larger ERC neurons are a biological signature of the SuperAging trajectory.


Assuntos
Doença de Alzheimer , Envelhecimento Cognitivo , Idoso , Animais , Camundongos , Humanos , Feminino , Idoso de 80 Anos ou mais , Masculino , Córtex Entorrinal/patologia , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , Envelhecimento
7.
Brain ; 145(7): 2378-2393, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905466

RESUMO

Stroke causes devastating sensory-motor deficits and long-term disability due to disruption of descending motor pathways. Restoration of these functions enables independent living and therefore represents a high priority for those afflicted by stroke. Here, we report that daily administration of gabapentin, a clinically approved drug already used to treat various neurological disorders, promotes structural and functional plasticity of the corticospinal pathway after photothrombotic cortical stroke in adult mice. We found that gabapentin administration had no effects on vascular occlusion, haemodynamic changes nor survival of corticospinal neurons within the ipsilateral sensory-motor cortex in the acute stages of stroke. Instead, using a combination of tract tracing, electrical stimulation and functional connectivity mapping, we demonstrated that corticospinal axons originating from the contralateral side of the brain in mice administered gabapentin extend numerous collaterals, form new synaptic contacts and better integrate within spinal circuits that control forelimb muscles. Not only does gabapentin daily administration promote neuroplasticity, but it also dampens maladaptive plasticity by reducing the excitability of spinal motor circuitry. In turn, mice administered gabapentin starting 1 h or 1 day after stroke recovered skilled upper extremity function. Functional recovery persists even after stopping the treatment at 6 weeks following a stroke. Finally, chemogenetic silencing of cortical projections originating from the contralateral side of the brain transiently abrogated recovery in mice administered gabapentin, further supporting the conclusion that gabapentin-dependent reorganization of spared cortical pathways drives functional recovery after stroke. These observations highlight the strong potential for repurposing gabapentinoids as a promising treatment strategy for stroke repair.


Assuntos
Acidente Vascular Cerebral , Animais , Axônios/fisiologia , Gabapentina , Camundongos , Plasticidade Neuronal/fisiologia , Tratos Piramidais , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...